MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR MITERM 3

1. Write the number $1043_{(5)}$ in 4 -ary representation.

Solution. Although one can do this directly, we will first convert the 5-ary into our good ol' decimal representation and worry about converting that into 4 -ary.
$1043_{(5)}=1 \cdot 5^{3}+0 \cdot 5^{2}+4 \cdot 5^{1}+3 \cdot 5^{0}=125+0+20+3=148$. Now we find its 4 -ary representation.

What's the largest power of 4 that fits into 148 ? It's $64=4^{3}$.
How many times does $64=4^{3}$ fit in 148 ? 2 times and the remainder is $148-2 \cdot 64=20$.
How many times does $4^{2}=16$ fit in 20 ? 1 time and the remainder is $20-1 \cdot 16=4$.
How many times does $4^{1}=4$ fit in 4 ? 1 time and the remainder is $4-1 \cdot 4=0$.
How many times does $4^{0}=1$ fit in 0 ? 0 times (funny how in English one says "one time" and "zero times").

Thus, the 4 -ary representation of 148 is $2110_{(4)}$. Hence, we showed that $1043_{(5)}=$ $2110_{(4)}$.
2. Let D be a set and let $f, g: D \rightarrow \mathbb{R}$ be bounded functions such that $\forall x \in D, f(x) \leq g(x)$. For each of the following statements, either prove it or give a counter-example.
(a) $\sup f(D) \leq \inf g(D)$.

Solution. This is false and here is a counter-example. Let $D:=\{1,3\}, f=\operatorname{id}_{D}$, i.e. $f(1)=1$ and $f(3)=3$, and let $g=f+1$, i.e. $g(1)=2$ and $g(3)=4$. We certainly have that for every $x \in D, f(x) \leq g(x)$, but $\sup f(D)=\sup \{1,3\}=3$, while $\inf g(D)=\inf \{2,4\}=2$.
(b) $\sup f(D) \leq \sup g(D)$.

Solution. This is true. Put $u:=\sup g(D)$. Recall that the supremum of a set is its least upper bound; in particular, it is less than or equal to any upper bound. Thus, to show $\sup f(D) \leq u$, we only have to show that u is an upper bound for the set $f(D)$. By the definition of an upper bound (hope the reader has reviewed it by now), we have to show that for all $y \in f(D) y \leq u$. To this end, fix an arbitrary $y \in f(D)$. Being in $f(D)$ means that there is $x \in D$ such that $y=f(x)$. But for this x, we have $f(x) \leq g(x)$. Moreover, $g(x) \in g(D)$, so $g(x) \leq \sup g(D)=u$. Thus,

$$
y=f(x) \leq g(x) \leq u,
$$

and this is what we had to show.
(c) $\inf f(D) \leq \inf g(D)$.

Solution. Analogous to the previous part (with inequalities reversed).
3. Prove that for any sets $A, B \subseteq \mathbb{R}$ that are bounded above, $\sup (A \cup B)=\max \{\sup A, \sup B\}$. Solution. Put $u:=\max \{\sup A, \sup B\}$ and realize that all we have to show is that u is the supremum of the set $A \cup B$. By definition, we have to show two things:
(i) u is an upper bound for $A \cup B$.

Proof. We have to show that $\forall x \in A \cup B x \leq u$. Fix arbitrary $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$, then $x \leq \sup A \leq u$. If $x \in B$, then $x \leq \sup B \leq u$. Thus, either way, $x \leq u$.
(ii) Any number $v<u$ is not an upper bound for $A \cup B$.

Proof. Fix $v<u$. Because u is the maximum of $\sup A$ and $\sup B$, it is equal to one or the other, and we consider those cases separately. Suppose $u=\sup A$, i.e. u is the least upper bound of A, and since $v<u, v$ is not an upper bound for A, which means that there is $x \in A$ with $x>v$. In particular, this x is in $A \cup B$, so v is not an upper bound for $A \cup B$. The case of $u=\sup B$ is handled similarly (these are symmetric cases).

Before continuing further, let's review the definition of limit.
Definition 1. Let $P(n)$ be a mathematical statement for every $n \in \mathbb{N}$. We say that eventually $P(n)$ holds if there is (an event) $N \in \mathbb{N}$ such that for every (moment) $n \geq N, P(n)$ holds.

Definition 2. We say that $L \in \mathbb{R}$ is a limit of a sequence $\left(x_{n}\right)_{n}$, and write $\lim _{n \rightarrow \infty} x_{n}=L$ or $x_{n} \rightarrow L$, if for every (measure of closeness) $\varepsilon>0$, eventually $\left|x_{n}-L\right|<\varepsilon$ (i.e. x_{n} is within less than ε distance of L).

Rewriting the last definition without using the term eventually, we get the following (somewhat dry and hard to comprehend) reformulation:
Definition $\mathbf{2}^{\prime}$. We say that $L \in \mathbb{R}$ is a limit of a sequence $\left(x_{n}\right)_{n}$ if

$$
\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geq N\left|x_{n}-L\right|<\varepsilon .
$$

It is also worth noting that the condition $\left|x_{n}-L\right|<\varepsilon$ can be written in various (equivalent) ways, such as:
(i) $-\varepsilon<x_{n}-L<\varepsilon$
(ii) $-\varepsilon<L-x_{n}<\varepsilon$
(iii) $L-\varepsilon<x_{n}<L+\varepsilon$
(iv) $x_{n} \in(L-\varepsilon, L+\varepsilon)$
(v) $x_{n} \in B(L, \varepsilon)$, where $B(L, \varepsilon)$ denotes the "open ball around L of radius ε ", which simply means $B(L, \varepsilon):=(L-\varepsilon, L+\varepsilon)$.
5. Let $P(n)$ be a mathematical statement for every $n \in \mathbb{N}$. Write down explicitly the negation of the statement "eventually $P(n)$ holds".
Solution. $\forall N \in \mathbb{N} \exists n \geq N \neg P(n)$; in words: for every "threshold" $N \in \mathbb{N}$, there is a "bad" index n after that "threshold", at which the property P fails.
6. Let $n_{0} \in \mathbb{N}$. For a sequence $\left(x_{n}\right)_{n}$, let $\left(x_{n}\right)_{n \geq n_{0}}$ denote the sequence obtained from $\left(x_{n}\right)_{n}$ by deleting the first $n_{0}-1$ terms, i.e. $\left(x_{n_{0}}, x_{n_{0}+1}, x_{n_{0}+2}, \ldots\right)$. Prove that $\left(x_{n}\right)_{n}$ converges to L if and only if $\left(x_{n}\right)_{n \geq n_{0}}$ converges to L. In other words, the first finitely many terms don't affect the convergence of the sequence.

Solution. This statement is immediately implied by the definition of eventually and there is nothing more to write. (I won't demand more on the midterm, don't worry.)
7. Suppose that $x_{n} \rightarrow L$ and $L>7$. Prove that eventually $x_{n}>7$.

Solution. Intuitively, $x_{n} \rightarrow L$ means that no matter how close we want (arbitrary positive distance ε), the members of the sequence $\left(x_{n}\right)_{n}$ eventually get that much close to L. Now how far is L from 7? Their distance is $L-7$. Thus, we choose our distance $\varepsilon:=\frac{L-7}{2}$, so we get that eventually

$$
L-\varepsilon<x_{n}<L+\varepsilon .
$$

The relevant inequality for us here is the first one because $L-\varepsilon=7+\varepsilon$, so $7<7+\varepsilon=$ $L-\varepsilon<x_{n}$.

P.S. Drawing a picture always helps.

8. For each of the following statements, determine whether they are true or false, and prove your answers.
(a) If a sequence is bounded, it has a limit.

Solution. NOPE, take $\left(x_{n}\right)_{n}=(0,1,0,1, \ldots)$.
(b) The sequence $(0,1,0,1, \ldots)$ diverges.

Solution. YEP, and to prove it we simply show that no real number L is a limit of this sequence. Fix an arbitrary $L \in \mathbb{R}$. The tricky part here is the realization that we have to consider the following cases separately:
Case 1: $L=0$. Intuitively, 0 can't be a limit of our sequence because of the 1 s . We prove this formally. To show that 0 is not a limit of $\left(x_{n}\right)_{n}$, we need to find a "bad" $\varepsilon>0$ such that for all $N \in \mathbb{N}$ there is $n \geq N$ with $\left|x_{n}\right| \geq \varepsilon$. In our case, $\varepsilon:=1$ works. Indeed, no matter what N is, taking any even index $n \geq N$ gives $x_{n}=1$ so $\left|x_{n}\right| \geq \varepsilon$.

Case 2: $L \neq 0$. Intuitively, a nonzero L can't be a limit of our sequence because of the 0 s . We prove this formally. To show that L is not a limit of $\left(x_{n}\right)_{n}$, we need to find a "bad" $\varepsilon>0$ such that for all $N \in \mathbb{N}$ there is $n \geq N$ with $\left|x_{n}-L\right| \geq \varepsilon$. In our case, we take ε to be the distance between 0 and L, i.e. $\varepsilon:=|L-0|=|L|$. Indeed, no matter what N is, taking any odd index $n \geq N$ gives $x_{n}=0$ so $\left|x_{n}-L\right|=|0-L|=|L| \geq \varepsilon$.
(c) $\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{n+1}=-1$.

Solution. NOPE, and showing it is very similar to Case 1 of the previous part. Intuitively, -1 can't be a limit of our sequence because its members at even indices are positive, and hence away from -1 by at least distance 1 .
Now formally. To show that -1 is not a limit of $\left(x_{n}\right)_{n}$, we need to find a "bad" $\varepsilon>0$ such that for all $N \in \mathbb{N}$ there is $n \geq N$ with $\left|x_{n}-(-1)\right| \geq \varepsilon$. In our case, $\varepsilon:=1$ works. Indeed, no matter what N is, taking any even index $n \geq N$ gives $x_{n}>0$ so, in particular, $\left|x_{n}-(-1)\right|=\left|x_{n}+1\right| \geq 1=\varepsilon$.
(d) If a sequence is monotone, it has a limit.

Solution. NOPE, take $x_{n}=n$, then $\left(x_{n}\right)_{n}$ is unbounded and hence diverges. This question is design to emphasize the hypothesis of boundedness in the Monotone Convergence Theorem.
(e) If $\left(x_{n} \cdot y_{n}\right)_{n}$ converges, then at least one of $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ converges.

Solution. NOPE, take $\left(x_{n}\right)=(0,1,0,1, \ldots)$ and $\left(y_{n}\right)=(1,0,1,0, \ldots)$, then for all $n \in \mathbb{N}$ $x_{n} y_{n}=0$, so $x_{n} y_{n} \rightarrow 0$, whereas neither of $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ converges.
(f) If a bounded sequence $\left(x_{n}\right)_{n}$ is increasing, then it converges to $\sup \left\{x_{n}: n \in \mathbb{N}\right\}$.

Solution. YEP, this is just the statement of the Monotone Convergence Theorem.
9. Do Problems 1, 2(b) and 3 of HW10. If you have time, also do 2(a) and 4.

Solution. Sorry, this is part of the homework. However, here is a hint for 2(b): use 2(a).

